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We consider the time evolution of a Fermi gas with two-body interaction. For 
an  initial state p which is translation invariant and sufficiently clustering we put  
H = H 0 + )~V, we take the limit )t---> 0, t ~  oo such that )t2t = ,c and show that 
(a) the limiting state 0T does not  depend on the/)-point  correlations of P for 
p > 2, (b) p, has vanishing p-point  correlations for p > 2, and (c) the two-point 
function that determines O~ satisfies the Boltzmann equation. To avoid nonessen- 
tial technical difficulties, we consider the case of a Fermi gas on a lattice. 
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1. INTRODUCTION 

Hardly any equation in theoretical physics has evoked as much discussion 
and controversy as the Boltzmann equation. Much of the discussion was 
and still is centered around the fundamental question at what point and 
through what assumption the irreversibility in time was introduced. In the 
original derivation by Boltzmann an essential feature is the Stoszzahlansatz, 
an assumption about the lack of correlation between the velocities of two 
colliding particles. This assumption must be made not only at the initial 
time, but at all times. This clearly very undesirable aspect has triggered 
many attempts to find more satisfactory derivations. 2'(2) 

A very similar situation exists with respect to the Pauli master equa- 
tion. In the standard derivation of that equation, an assumption on the 

i Institute for Theoretical Physics, University of Groningen, Groningen, The Netherlands. 
2 Of the many  papers devoted to the derivation of the Boltzmann equation, we mention in 

particular the work of two groups, the group of Bogoliubov and coworkers and that of 
Prigonine and coworkers. See Ref. 1. 
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randomness of phases is made, again not just at the initial time but at all 
times. In 1955 Van Hove (B) published a paper in which a derivation of the 
master equation was presented without repeated use of a random phase 
assumption, but with a certain smoothness condition on the initial state. An 
essential step in this approach is the recognition that in the case of many 
degrees of freedom diagonal terms in the perturbation expansion are 
predominant. Another important tool is the so-called X2t limit, where the 
coupling parameter X tends to zero and the time t tends to infinity, in such 
a way that X2t has a finite limit ~-. 

One of the difficulties with Van Hove's derivation lies in the fact that 
some of his basic assumptions are only valid for an infinite system, whereas 
the formalism only applies to systems of a finite number of degrees of 
freedom. Even the probabilities appearing in the master equation are not 
well defined if the system is infinite. 

In this paper a derivation is presented of the quantum Boltzmann 
equation very much along the lines of Van Hove's paper. However, in our 
case, essential use is made of a formalism, the so-called algebraic approach, 
that is well suited for the treatment of infinite systems. Furthermore, the 
distribution functions occurring in the Boltzmann equation are well defined 
for such systems. 

The system considered in this paper is a gas of Fermi particles with 
two-particle interaction. In order to avoid technical difficulties that have to 
do with convergence of integrals in momentum space, we deal with a 
system where the particles are located on an infinite lattice instead of in a 
continuous space. However, most of the arguments remain valid for the 
continuous case, as long as one is willing to believe that those integrals 
converge. The only assumptions made regard the initial state. They are: (1) 
the initial state is homogeneous, and (2) the initial state satisfies a certain 
cluster property. The first condition is one of mathematical convenience. It 
seems feasible though more complicated to treat the nonhomogeneous case 
along the same lines. The cluster property, i.e., an assumption on the decay 
of correlation functions, is very essential. It is easy to construct examples of 
nonclustering initial states that do not behave asymptotically according to a 
Boltzmann equation. 

With these initial conditions we prove that the one-particle distribution 
function satisfies the Boltzmann equation in the ),2t limit. The physical 
interpretation is clear. It means that a very weak interaction acts during a 
long stretch of time. The variable ,r which is the limit of X2t is to be 
interpreted as a rescaled time parameter. It is the time variable occurring in 
the Boltzmann equation. This method is the mathematical realization of the 
old idea that, although noninteracting particles do not reach thermal 
equilibrium, the introduction of an interaction, however slight, will bring 
the system finally to thermal equilibrium. 
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We start in Section 2 with some preliminaries on the infinite Fermi gas 
on a lattice and a discussion of the dynamics, where the two-body interac- 
tion is treated as a perturbation of the free dynamics. After a discussion of 
the assumptions about the initial state 0, we consider some first- and 
second-order terms and their ?tzt limit in Section 4. Then in Sections 5 and 
6 we treat terms of arbitrary order by means of diagrams and reach two 
important conclusions. It is shown, firstly, that only the two-point correla- 
tion functions of O contribute to the ?t2t limit. Secondly, it is found that the 
state 0,, obtained in the X2t ~ r limit, is quasifree, i.e., has no nonvanishing 
truncated correlation functions but two-point functions. Finally, in Section 
7, it is shown that the one-particle distribution function of this state 
satisfies, as a function of r, the quantum Boltzmann equation. 

This equation (7.1) differs from the classical Boltzmann equation in 
two respects. In the first place there is the occurrence of factors (1 - N(k)) 
in the equation, which reflect the exclusion principle. Secondly, because of 
the weak interaction limit (X2t limit) the scattering cross section occurs in 
Born approximation. The usual equation, with the full scattering cross 
section would be obtained in the low-density limit, where the density n 
tends to zero, and t to infinity, in such a way that nt tends to a finite value 
~-. A derivation would be somewhat more complicated but not essentially 
different from the derivation presented here. 

At the end of the paper we derive some consequences of the quantum 
Boltzmann equation. We prove the quantum version of the H theorem and 
show that the Fermi distribution is the only stationary solution of the 
equation. 

2. LATT ICE  GAS OF FERMI  P A R T I C L E S  

As mentioned in the Introduction an exact treatment of an infinite 
system of Fermi particles with two-body interaction gives rise to technical 
difficulties that are unrelated to the problem of deriving a transport 
equation. We shall therefore avoid these difficulties and discuss a lattice gas 
of fermions instead. In this section we shall show that the time evolution of 
fermions on a lattice with two-particle interaction gives rise to a continuous 
one-parameter group of automorphisms of the algebra of observables. 

At each point x of a three-dimensional lattice we have a creation 
operator a(x)* and an annihilation operator a(x). They satisfy the well- 
known anticommutation relations 

(a(x),a(y)*} = 8~, 

{a(x),a(y)) = {a(x)*,a(y)*) = 0 

Let 9/ be the C* algebra generated by all such creation and annihilation 
operators. 
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Translations on the lattice are defined in an obvious manner as a 
discrete group of automorphisms of 9~. To define the dynamics of the 
system, we must first define the free evolution, i.e., the equivalent of the 
free evolution of a continuous system. 

The one-particle Hilbert space is now ~ =/2(Z3), i.e., the set of 
functions f on the lattice, such that 

~,, If(x)12 < 
x ~ Z  3 

This allows us to define operators 

a ( f )  = ~_~ a ( x ) f ( x )  
x 

which satisfy the anticommutation relation 

{ a ( f ) , a ( g ) }  = { a ( f ) * , a ( g ) * }  = 0 

and 

( a ( f ) * , a ( g ) }  = (f,  g) 

For the definition of the free particle evolution it is convenient to consider 
the Fourier transform: 

f ( k) = (2~r ) -3 /2~  f ( x ) e  -ikx 
x 

f is periodic in three dimensions with period 2rr. We define f, as follows: 
A = f  . 

f t (k )  (k)e '~'t 

where the kinetic energy e k is a given even, nonnegative, nonconstant, 
periodic, and entire function. The free time evolution is now defined by 

a ~  = a( f t )  

This extends in an obvious way to an automorphism group of 91. 
Before introducing an interaction between the particles, we consider 

some properties of the free evolution: 

(f ,  gt) = 2x f ( x )  g,(x)  = ",ff3kf(k)g(k)e" " ,~t 

Sincef(k)~,(k) ~ L 1 and e~ is not constant, we conclude that 

lira (f ,  gt) = 0 It[-,~ 

as is the case for the continuous gas. On the other hand, only in the lattice 
case one can define the wave function 8: 

6 ( x ) =  1, for x - - O  

= 0 ,  for x v ~ 0  
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We consider the time evolution of 8: 

St(x) = (2rr)-3f:d3kei'ktei~X 

Since 8 t is the Fourier transform of an infinitely differentiable function, we 
conclude that d t ~ s(Z3), where s (Z  3) is the set of functions on the lattice 
that vanish at infinity faster than any power of ]x[. 

A two-particle interaction is defined, for each finite sublattice A, by 

1 V(A) = ~ ~ 4 ) ( x -  y ) a ( x ) * a ( y ) * a ( y ) a ( x ) ,  (2.1) 
x,yEA 

where the two-body potential 4) has the following properties: 

(a) symmetrical: 4)(x) = 4)( - x) 

(b) ~ [4)(x)[ < oo 
x 

These conditions on 4) are sufficient in order that the interaction gives rise 
to a strongly continuous group of automorphisms of 9.1. However, for later 
purposes we need differentiability of the Fourier transform of 4). Then 
condition (b) must be replaced by 

(b') ~] Ixlp[4)(x)[ < oo, for some p > 0 
x 

We shall now multiply V(A) with a coupling constant X and consider 
XV(A) as a perturbation. The perturbed time evolution is given by the 
convergent power series in X 

o o  t 

a~'A(A) = ~, ( i a ) " (  dtl(tld,2.. .  s n 
n = 0 J 0  J 0  

We shall prove that  atx'a(A) has a limit for A-o oo. This limit is the time 
evolution of the system with two-body interaction. The proof is very similar 
to that of quantum lattice spin systems. (4) (See also Ref. 5.) 

We shall assume first that A is a local observable, i.e., A is a 
polynomial in a(x), a(y)*, for x and y in some finite region. The only 
complication, as compared to the case of spin systems, is the t dependence 
in ~O(V(A)) on the right-hand side of (2.2). Now 

1 ~~ ~ 4)(x-Y) ~, a(z,)*a(z2)*a(z,)a(z4) 
x , y  E A  Z l  �9 . . z 4  

• S t ( z , -  x) a,(z2-y)8,(z3-y)8,(z4- x) 

= Z VtA(z1,z2,z3,z4)a(zl)*a(z2)*a(z3)a(z4) 
Z I , Z 2 ~ Z 3 , Z 4  
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where 

Clearly 

1 
vtA(zI,z2,z3,z4) = ~ Z ~ ( x - - y ) a t ( z  1 -- X) 6,(Z 2 - y )  

x,yEA 

X 8 t ( z  3 -- y ) S t ( z  4 -- x )  

l im vtA(z,  , z 2 , z  3 ,z4).~- Vt ( z  I , z 2 , z  3 ,z4) 
A--) 0r 

with 

1 
V,(z,  , z 2 , z 3 , z 4 ) =  ~ Y ~ ( x  - y ) a t ( z  , - x)  at(z 2 - y ) 6 ~ ( z 3 -  y )S t ( z  4 - x)  

x,y 

As a result of condition (b) there is for fixed t a finite positive number 
M(t) ,  such that 

sup ~,,' [Vc(z , ,Z2,Z3,Z4)[~ M(t) (2.3) 
It'[ < t ZlZ2Z3z4 

where the summation extends over all Zl,Z2,Z3,Z4, with the condition that 
at least one of them is at the origin. Using (2.3), the repeated commutator 
in (2.2) can be estimated uniformly in A. We get 

. . . .  ] 

= . . . .  ] 

<<. 2"NA(N A + 3 ) . . .  ( N  A + (n - 1 )3) i ( t ) ' l lA][  

where N A is the number of points of the lattice corresponding to the local 
observable A. The right-hand side of this inequality is majorized by 

2 n M ( t ) n ( N A  + 3n)"llA II < 2 n M ( t )  nn! exp(NA + 3n)  .11A II 

so that the nth order term in (2.2) is less in norm than 

(2XtM(t)e3) 'e  N~ IIA II (2.4) 

where the factor n! is canceled by the time ordering in the integral. We 
conclude that for A local and given X, the limit 

lim at xA (A) = at x (A) 
A---~ ~ 

exists for t < t 0, where t o depends on ~, but is independent of Nn. By 
continuity this result may be extended to all A E 9/. Finally, using the 
group property, one defines a, x for all t. It is a consequence of the 
translation invariance of the two-body potential ~, that at x commutes with 
translations. 
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3. THE INITIAL STATE 

As is customary for infinite systems, a state is a normed positive linear 
form of the algebra 9A. Specifically, if we denote the state by p, the 
expectation value p ( A )  of A has the properties 

(a) + = X0(A)+  t ,p(B) 
(b) o ( A ) > I O ,  if A />0 
( c )  = 1 

A state p is invariant under a transformation a if p ( a ( A ) ) =  p ( A )  for all 
A ~ 9/. If  p is invariant under the time evolution a~ then we say that p is 
stationary. If p is not stationary, we define a time evolution of P by the 
equation 

p~(A)=p(a~(A)) 
Clearly p~ coincides with O at t = O. 

We shall be interested in the behavior of Ot x for large t and weak 
interaction. We shall study, in particular, the limit t ---> oo, X ~ O, such that 
~" = )kz t  is finite. 

We shall have to impose some conditions on the initial state O. Some of 
these conditions are clearly necessary for physical reasons, others are 
introduced for purely technical reasons or in order to simplify the discus- 
sion. The conditions are as follows: 

1. Gauge Invariance. This condition says that 

p ( a ( x i ) * a ( x 2 ) * . . ,  a ( x s ) * a ( y l ) . . ,  a ( y t )  ) = 0 unless s = t. 

This is a physical condition, based on the fact that only gauge-invariant 
quantities are observable. 

2. Translation Invariance. This restriction is introduced for math- 
ematical convenience. 

3. Cluster Properties. As is well known, the expectation value 

p ( a ( x i ) *  . . . a ( x s ) * a ( y l )  . . . a ( y ~ ) )  

can be expressed in terms of truncated correlation functions: 

p ( a ( x l ) *  . . . a ( x ~ ) * a ( y , )  . . . a ( y ~ ) )  

= )OT( . . .  ) . . . p T ( . . .  ) 
d 

where the summation extends over all possible divisions d of the set of 
points x 1 . . . . .  y~ into subsets. Pd is the parity of the corresponding permu- 
tation. The cluster properties are decay properties of these truncated 
correlation functions. Because of translation invariance, the truncated 
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functions depend on the differences only: 

p T ( a ( x l ) *  . . . a ( x p ) * a ( y , )  . . . a (yp) )  = fe(x2 -- x l  . . . . .  yp -- x , )  

We define the following: 

Cluster Condit ion I. fp E 11(Z3(2P-O), or 

I fAx= . . . . .  y ,)l < oo.  
X 2 ,  . . . ,yp 

As we shall work in momentum~ space, we consider the Fourier transform)~ 
of fp. As a consequence of I, fp is a continuous periodic function. 

We shall find it convenient to work with creation and annihilation 
operators for particles of given momentum. We define 

a(  k ) = (2~r)-3/2~] a(  x ) e  -`kx 
X 

Since the infinite sum on the right-hand side does not exist, a ( k )  does not 
exist as a function of k, but has a meaning as distribution. Therefore, also 
expectation value o(a(kO* . . .  a (kp)*a( l l )  . . .  a(l/,)) must be interpreted as 
distribution on [ - ~r, or] 6p, Let us, on the other hand, consider the truncated 
"function" p T ( a ( k l ) * . . .  a(lp)). As a consequence of translation invari- 
ance, there is a f a c t o r  33(kl + �9 " "  + kp - I l . . . . .  Ip), so that we can 
write 

O r ( a ( k l )  * . . .  a(lp )) = )~(k2, k 3 . . . . .  lp ) 

X ( ~ 3 ( k l - - I  .- " " "  "t- k p - -  [1 . . . . .  I v )  

Here s is the Fourier Transform (F.T.) of fp and hence continuous. We 
have reached the important conclusion, that the truncated functions in 
momentum space are continuous, apart from the 8 function which ex- 
presses momentum conservation. 

Of special interest are the two-point functions 

p ( a ( k ) * a ( l ) ) =  N ( k ) ~ 3 ( k  - l )  

where N ( k )  is the one-particle distribution function, and 

1 f d 3 k N ( k ) =  n 
(2~') 3 

with n the density of the gas. 
As will become clear in the following sections continuity of the 

truncated functions is not enough, but some differentiability is necessary. 
This is achieved if we require a somewhat stronger cluster property: 
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Cluster Property II. 

Ix,l-lx21~... [x~_,lOff~l < ~ ,  for some a = 1 , 2 , . . .  
X l , . . . ~ X p - - I  

A 
If this is fulfilled fp(k~, k 2 . . . .  , k s_ ~) is simultaneously a times differentia- 
ble with respect to each of the variables kl,  k 2 , . . . ,  k e_ 1. 

4. THE h2t LIMIT. FIRST- AND SECOND-ORDER TERMS 

We shall now study the time evolution of the state p~ x which equals p at 
t = 0. By definition O~X(A) = O(aX(A)). Using (2.2) we obtain an expansion 
in powers of X, 

r/ t ( *  
p~(A) = ~ (iX) ( d t l . .  " jotn-ldtn 

n ~ O  dO 

• 0 ( [o~  [o,~ ,(~), [ . . .  Eo,~176 . . .  l lJ)  
(4.1) 

We shall first consider two-point correlations. Let A = a(f )*a(g);  then 

p)(a( f )*a(g))  = fd3kNX(k,t)f(k)g(k). Here NX(k,t)  is the one-particle 
distribution. We used the fact that the time-evolution @ commutes with 
translations, so that Ot x is translation invariant at all times. 

As it is convenient to work in momentum space, we rewrite the 
interaction as follows: 

1 f : d 3 k d 3 l d 3 m d 3 n v ( k _  n)63(k + l -  m - n )a (k )*a ( l )*a (m)a(n )  V = g  

or more symmetrically, 

V =  1 fklmn(V( k _ n ) -  v ( k -  m))63(k + 1 -  m -  n) 

• a (k )*a( l )*a(m)a(n )  (4.2) 

where v(k) is the Fourier transform of ~(x) and fk is a shorthand notation 
for f d3k. We substitute (4.2) in (4.1), take A = a (f)* a (g), and consider the 
term of first order in X. We obtain 

iX fntdtt fk ( v ( k -  n ) - v ( k -  m))63(k + l - m - n )  
4 o klmn 

X O a k * a  l * a  m a  n , a  k o * a  lo k A l s (E ( ) ( )  ( ) ( )  ( ) ( ) l ) i (o )~ (o )  
• exp[ i(e k + "l - % - "n) t, ]exp[ i ( , ko -  e,0)t ] 

Working out the commutator and using the symmetry in k and l and in m 
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and n we get the following terms: 

l-i2tfn'dt,( ~ ( v ( k - k o ) - v ( k - m ) ) 3 3 ( k  + l - m - k o )  
2 o a~t,. koto 

• p(a(k)*a(I)*a(m)a( lo)) f  (/Co) g(k0)exp[ i(e k + e e - e,, - ~k~)q ] 

dO Jlmn kol o 

• p(a( l )*a(m)a(n)a(ko)*)](ko)~(ko)exp[i (% + e, - % - q ) t l ]  

2'c  - i X  dt z v ( l o - k o ) - v ( l o - m ) ) 3 3 ( l o + I - m - k o )  
0 J i m  7 . . . . .  

X p(a(1)*a(m)) f (ko)~(ko)exp[i (% + e, - c,, - ek0)t,] (4.3) 

Notice that, as a consequence of translation invariance the integrands in 
(4.3) contain a factor 33(ko - lo), thereby removing the t dependence in A. 

The four-point correlation functions can be expressed in terms of 
truncated functions: 

p(a(k)*o( / )*a(m)a(n))  = p T(a(k)*a( l )*a(m)a(n))  

+ o(a(k)*a(n))p(a(1)*a(rn)) 

- p(a(k)*a(m))p(a(1)*a(n)) 

Substituting this in (4.3) we obtain 

1 t 
~i~t~ d t z (  ( ( v ( k -  k o ) -  v ( k -  m))33(k + l -  m--]Co) 

dO JklmJkolo 

X p r(a(k)*a(1)*a(m)a(lo)) f(ko)~(ko)exp[i(r  + ~, - cm - eko)q! 

' 22  1 i ~  dt~ (v( l  o - n) - v ( l  o - m))33(Io + [ - m - n) 
+ "2 JO Iron kol o 

A 

• p "C(a(! )*a(m)a(n)a(ko)*) f  (ko) ~(ko)exp[ i (% + ~ - ~,. - ~.)tl ] 

(4.4) 

where we notice that the contributions from the two-point correlations and 
the last term in (4.3) cancel each other. 

We shall now study the ;~2t limit of the remaining terms, i.e., we let 
t--~ ~ and at the same time ~--~0, in such a way that the limit of ;~2t = 7, 
with ~" some positive number. We notice that pT(a(k)*a(l)*a(m)a(n)) 
= j (k ,  l; m, n)3 3(k + I - m - n), with f continuous. Using this, we rewrite 
the first term in (4.4) as follows: 

1_2 i~t fo~dt ~ F(tz) 
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where F is of the form 

F(t) = f dkl . . . dk, G(k,  . . . k , ) e x p l i t E ( k , . . ,  kn) ] 

with E analytic in k , , k  2 . . . . .  kn. The continuity and differentiability 
properties of G depend on the cluster properties of p. Assuming only that 
the truncated functions are in /1(Z3"-3)  we can, as in Section 4, conclude 
that F is continuous and 

lim F(t) = 0 

As discussed in the Appendix, with somewhat stronger decay properties of 
the truncated functions, it can be shown that 

lim t2F( t) = 0 
Itl--,~ 

This implies in particular that F E L ' ( R )  and the limit t o ~  of the 
first-order term exists. Consequently, these terms vanish in the ~2t limit. 

We now proceed to second order. One finds 

(i)~)2~tdtl~tIdt2~ f ~ [ v ( k 2 - n 2 ) - v ( k 2 - m 2 ) ]  
42 0 d0 Jk212m2n2dkll lmlmlJkolo 

•  l 2 -  m 2 -  n2)Iv(k 1 - n , ) -  v ( k , -  ml) ] 

• 63(kl + l I - m 1 - nl) 

• P(I a (k2)*a (12)*a (mz)a (n2), I a (kl)*a (ll)*a (m,)a (n 1), 

a(ko)*a(lo)]]) 
A ^ 

• f (ko)g(lo)exp[ i(ck~ + " 6 -  cm2- %~)t2] 

X exp[ i(r + Ez, - 'm, - '~,)tl ] 

Working out the repeated commutator we get a sum of terms of the typical 
form, 

~ k 2 ( t d l l ( t l d , 2 (  ( ( [  vtk 2 - k , ) -  v ( k  2 - m2) ] 
16 .,o ao dk212m2.JklllmlJkolo L 

•  2 + 12- m 2 - k l ) [ v ( k  , - ko) - v ( k  1 - ml) ] 

x 33(k 1+ l l -  m 1 - k o )  

A A 
• p(a(k2)*a(12)*a(m2)a(l,)*a(ml)a(lo))f (ko) g(ko) 

X exp[ i(Ck2+ "lz-- " m 2 - -  'k,)t2]exp[ i('k, + " l , -  "m I - -  •k0)tt] (4.5) 

Considering first the contribution of the truncated six-point function and 
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writing 

p r ( a  (k:)* a (12)*a (m2)a  (It)* a ( m O a  (10)) 

= f ( k 2 , 1 2 , m 2 , I 1  , m l ) 8 3 ( k 2  + l 2 + I l - m 2 -- m I - lo) 

we obtain 

X 2 f t d t  ' f t ' d t 2 f  f f I v ( k 2 -  kl)- v ( k  2 - m2)] 
16 ao ao dk212m2dkl l tml .Jko 

• + l 2 -  m 2 -  k O I v ( k  1 - k o ) -  v ( k  I - m t )  ] 

x 83(kl + [1 - ml - ko) 

• (k:, 12, m2, z, , m , ) f  (ko) ~ (ko)exp[  i(ek2 + et 2 -- em 2 -- r 

X expl i(r + r  r  eko)tl] 

This can be written as 

where F has the form 

X216 ~otdtl~o tldt2F(tl , / 2 )  

(4.6) 

(4.7) 

x2 f'd,,f"d,2f f f 
16 ao ao Jkz l2dk l l lml  k o 

X (~3(k2 -.I - l 2 - l I - k l ) [ / ) ( k  I - k o ) -  ,/~(k I - m l )  ] 

XSS(kl + l I - m I - k0) 

x f (k2 ,12  , m l ) N ( l l ) e x p [  i(r + r -- ez~ -- Ck,)/2 ] 

X exp[ i(r + r  Cm~- %)q]f(ko)g'(k~ (4.8) 

which is again of the form (4.7) and vanishes in the h2t limit. 
Finally we consider a term in (4.5) arising from two-point correlations 

One finds 

F( t ,  , t2)=  f dnk  G (  k l  . . . k,)exp I iE , (  k l  . . . k , ) t ,  lexp[ iE2( k ,  . . . k , ) t  2 ] 

discussed in the Appendix. Under suitable conditions on p, one can prove 
that 

lim t~ t2F( t l ,  t2) = 0 
Ii ---) O0 
t2--~ OO 

so that this term vanishes in the xEt limit. 
Consider next the term obtained by substituting in (4.5) 

p T ( a (  k2) * a(12)* a (  m , ) a  ( ko) )p( a (  m z )a  ( l O * ) 
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only. If we substitute o[a(k2)*a(lo)]p[a(12)*a(ml)lO[a(m2)a(ll)* ] in (4.5) we 
get 

X 2 ( t d t l ( t , d t 2 (  ( I v ( k 0 -  k l ) -  v(ko- /1)]2~3(kl  + l I - m I - k0) 
16 ao ao akfl~rnlak o 

' A  

• N(ko)U(m,)  [ 1 - U(10]  f (k0) ~ (k0) 

• exp[ i(ek, + % -  era,-  eko)( t , -  /2)] 
_ )k 2 s s 

ktdt,  l t ' d t2 f ( t , -  t2) (4.9) 
16 �9 - '0  d O  

As before 

lira ( " d t 2 f ( t l  - t2)-- foomdU f(u)  < 
tl-->~ JO 

so that this term is asymptotically proportional to t, and becomes propor- 
tional to z in the )t2t limit: 

We notice that in the surviving term the energy transfer E 2 at t 2 is the 
opposite of the energy transfer E t at t 1. This arises from the fact that the 
momenta of the created and absorbed particles at tl and t 2 are pairwise 
equal. It is typical for the general case we shall consider in the next section. 

. TERMS OF ARBITRARY ORDER IN X; DIAGRAMS 

If we take in (4.1) A = a(fO* . . .  a(ff)*a(g 0 . . .  a(gf) the nth order 
term contains the expression 

P([ a(k,)* a(l, )* a(m,)a(n,),  

[ . . . .  [a(k ,)*a(l l )*a(m,)a(n O, 

a(ql)*.., a(v)*a(sO.., a(,+)] . . .  ] ]  (5.1) 
In evaluating this we encounter two kinds of contractions. 

Type A contractions, arising from the repeated commutator, are con- 
tractions between an a(mi) and a(k))* not both from the same V and not 
both from A. The rule is the following: 

i. The pair a(mi),a(kj)* is replaced by - ( -  1)e63(mi - kj), where P 
is the number of creation and annihilation operators between them as they 
occur in (5.1). 

ii. The total expression is multiplied by ( -  1)'. 
Another kind of contraction, the type B contraction, occurs if we write 

the correlation function in terms of truncated functions. We distinguish: 
i. two-point type-B contraction where a pair a(mi), a(k/)* occurring 
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in this order is replaced by ( -1)ep(a(mi)a(kj)*)= ( - 1 ) e ( 1 -  N(mi) ) 
r i --kj), and a pair a(kj)*,a(mi) occurring in this order is replaced 
by ( -  1)Pp(a(kj)*a(mi)) = ( -  1)PN(mi)8 3(m i - kj). 

ii. 2p-point contractions (p = 2, 3 . . . .  ) of p creation and p annihila- 
tion operators, where these oPerators are replaced by the corresponding 
truncated function, multiplied by ( -  1) P, where P has the obvious meaning. 

The various terms may be represented by diagrams. Interactions and 
the operator A we represent by vertices occurring from right to left in the 
same order as in (5.1). The vertex representing A has 2f directed lines: f 
ingoing and f outgoing. An interaction vertex has two in-going and two 
out-going lines. A type-A contraction is a directed dotted line connecting 
two different vertices. Because of the special form of (5.1) each interaction 
vertex always has at least one A contraction connecting it with another 
vertex to its right. A type-B 2p-point contraction is represented by a circle 
with p in-going and p out-going lines connecting it with the corresponding 
vertices. 

The diagrams in Fig. 1 represent the two first-order terms in (4.4). The 
diagrams a, b, and c in Fig. 2 correspond to the second-order terms (4.6), 
(4.8), and (4.9) calculated in the previous section. 

One reaches a considerable simplification if one realizes that between 
any pair consisting of an absorption operator and a creation operator at 
different vertices there can occur two kinds of contractions, and in calculat- 
ing the contribution of all possible diagrams these may be added up. This 
leads to new diagrams, where a directed solid line replaces the sum of an 
A-type and a B-type contraction, according to the following rules: 

old new 
value 

k 
A - - - ~ - .  - ( -  1)" 

k 
B , ; 0--" ( - l ) e N ( k )  t k 

value 

- ( -  l ) e ( 1  - N(k)) 

k 
A - - - ~ - .  - ( -  1) ~' 

k 
B �9 < 0 - "  (-1)P(1 - N(k)) 

k p 
~ -- - ( -  1) N(k)  

Each diagram now corresponds to a number of different old diagrams. This 
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k0 k0 

Fig. 1. The diagrams corresponding to the two first-order terms in (4.4). 

procedure must, however, be corrected. As mentioned earlier, each interac- 
tion vertex must be connected by a type-A contraction with another vertex 
situated to its right. Therefore, when using the new prescription, for each 
vertex we have to subtract the term where only B-type two-point contrac- 
tions link the vertex to its right. As an example we work out the contribu- 

Q b 

Fig. 2. 

 //k0 
C 

The diagrams a, b, and c correspond to the second-order terms (4.6), (4.8), and (4.9). 
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k 

4 ke 

Fig. 3. Example of a diagram with the new internal lines. 

tion of the diagram in Fig. 3. We find 

(i~)2 
16 8 ( - 1 ) 2 ( t d q ( t ' d t 2 (  [ v ( k - k o ) - v ( k - m ) ] 2 8 3 ( k  + l - m - k o )  

JO JO J k l m  - 

• {[1 - N(k0)] [ 1 - N ( m ) ] N ( k ) N ( l )  

- N ( k o ) N ( m ) [ 1 -  N(k)]  [ 1 -  N( I ) ]  } 

• [ - N ( k 0 ) -  (1 - N ( k o ) ] e x p [ i ( t , -  t2)(% + e, - ,m - Cko)l 

The factor 8 is an expression of the fact, that, because of symmetry, a 
number of terms correspond to the same diagram. This expression repre- 
sents the sum of several different diagrams of the old kind, among which 
diagram c of Fig. 2. 

These examples suffice to show how an arbitrary nth order term may 
be calculated. 

. THE ~2t LIMIT IN nth  ORDER 

The contribution to p~(A) ,  with A = a ( f l ) *  . . .  a ( f f ) * a ( g ] ) . . ,  a(gf) ,  
of an nth-order diagram has the general structure 

( ix)n fo'dt ,  fot'dt2 . . . f o t " - ld t ,  F ( t ,  ,t2 . . . . .  tn , t )  

with 

(6.1) 

F ( t ,  . . . . .  t, , t )  = f k  I . . . . .  k p G ( k | ,  . . . , k p ) f i E l t l  . . . eiE"t"e mt (6.2) 

where the energies E I ,E  2 . . . . .  E depend each on some of the momenta 
k 1 . . . . .  kp. It is convenient to rewrite (6.2) in the form 

F (  tl, . . . , t n , t )  = J -dEl  . . . d E n d E  F ( E l . . . . .  E. ~ E ) e i E ] ~ l  . o . e iE,,t .e iEt 

(6.3) 
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As we have seen in the previous examples /~ is a product of some 
(possibly none) singularities of the form 8(E i + Ej) or 8(Ei) or 6 (E)  and a 
continuous function f of the remaining variables. The functions f depend 
on the initial state 0. As will be discussed in the Appendix p must satisfy 
certain cluster properties in order that the Fourier transform of f vanishes 
sufficiently rapidly at infinity. 

We shall first consider the singularities of the kind 6(Ei). They are due 
to the diagonal part of the two-particle interaction. An example of a 
diagram with such a vertex is given in Fig. 4a. As one sees, this diagram is 
obtained from the diagram of Fig. 4b by adding a vertex at time ti on an 
internal line and connecting it with a diagram for a two-point function. If 
the contribution of that two-point diagram is Na(k, ti), the effect of the 
extra vertex is the same as that of a perturbation term of the form 

X~ Na(k, t )[  v(O) - v(k - l )]a( l )*a(l )  

The effect of the sum of all possible two-point diagrams is then the same of 
that of a time-dependent external field, corresponding to the following term 
in the Hamiltonian: 

X~ N(k, t)[  v(O) - v(k - l ) ]a ( l )*a( l )=  X f lu(l , t )a(l)*a(l  ) 

Such a term can be incorporated in the unperturbed Hamiltonian. The net 

Fig. 4. 

b 

Diagram a gives an example of a vertex i with a factor 6(El). It is obtained from 
diagram b by adding a vertex with two-point diagram. 
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effect is, that everywhere in the energy exponents e ( k ) t  is replaced by 

r + X s  t ' )  aft' 

In the X2t limit this extra term vanishes compared to the first and may, 
therefore, be neglected. We conclude that diagrams that give rise to factors 
8 ( E i )  may be neglected in Xzt limit. 

The preceding argument does not exclude the possibility that there is a 
factor 8 ( E )  corresponding to the A vertex. Let us first assume that there is 
no such singularity, i.e., t ha t /~  is a nonsingular function of E. The only 
remaining singularities are then of the form 8(E~ + Ej). Such a singularity 
arises when, as a result of two-point contractions the in- and out-going lines 
of the two vertices i a n d j  have pairwise equal momenta.  As a result of the 
factor 6(E i "t- g . )  in F F depends on t i and 9 only through t i -- tj. If the 
integration over the variables t~, t 2 , . . . ,  t n were independent from 0 to t, 
this would give rise to a factor of t. As a result of the time-ordering this is, 
however, not always the case. Let us consider the fourth-order expression 

I ( t )=s163163163  

and consider the following cases: 
a. F =  f ( t  t - t 2 , t 3 , t 4 , t ) .  Keeping r = t 1 - t 2 , t 3 , t  4 fixed, the free vari- 

able t 2 is integrated from 0 to t - r, which gives rise to a factor t - ~- in the 
remaining integrand. Asymptotically for large t this leads to a factor t. 

b.  F = f ( q  - t z,  t 3 - t4, t).  As is easily seen, in this case I ( t )  is asymp- 
totically proportional to t 2. 

c. F = f ( t l , t  2 - t 3 , t 4 , t  ). Keeping t 1, t 2 - t3=  r and t 4 fixed, the 
integration of the free variable t 3 extends over the interval [t4, t~ - r], which 
gives a fo,)tor (t 1 - t 4 - r in the remaining integrand. If f vanishes suffi- 
ciently rapidly at infinity we do not obtain a factor t as in case a. 

d. F = f ( q  -- t 3 , t  2 - -  ta,  t ). A s  a result of the inequality t 4 ~< t 3 ~< t 2 
< t 1 < t, we do not get two factors t as in case b, but only one. For a more 
detailed discussion we refer to the Appendix of this paper. 

These examples suffice to draw the following conclusion. The largest 
power of t in (6.1) occurs for n even, and F ( E 1 , E  2 . . . . .  E n , E ) = f ( E  ~, 
E 3 . . . . .  E n _ I , E ) 8 ( E  1 + E2) . . .  8 ( E n _  l + En).  With (6.3) and (6.1) we ob- 
tain 

( i~k)ns163 s  t 2 , t 3 -  t4 . . . . .  ln_l--  in, ' )  

Its main contribution for large t is 

( iX)  n tn /2  s 1 7 6 1 7 6  d ~ ' n / 2 f ( r l ,  . .  q"n/2,t)  (,,/2)t . . . . .  
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In the 2t2t limit, this becomes .cn/2h(t), where 

lim h (t) = 0 
t----~ o 9  

Consequently even such terms vanish in the X2t limit. 
A different situation occurs when /v has a 6 ( E )  singularity as well. 

Reasoning as before, the main term for large t occurs for n even, and when 
F =  f ( E 1 , E  3 . . . . .  E n _ I ) d ( E  l + E2) . . .  ~(En_ 1 + En)8 (E  ). We find 

")~f0t foo t" 'dt, f ( t  1 , - t , ) ,  (l~k dtl �9 �9 �9 - r t3 - t4 . . . .  tn- 1 

which for large t becomes 

(iX) n t n/2 fo~d,rl d ' r n / 2 f ( ' g l , . . .  "Cn/2) 
(n /2 ) !  . . . .  

In the ~2t limit, this term survives and is proportional to r n/2. 
We can now draw two important  conclusions. 
I. Contributions of diagrams, where for each successive pair of 

vertices 2i - 1 and 2i there is a factor 8(E2i_ i + E2i) contain only two- 
point contractions. Terms with 2p-point contractions (p > 1) do not con- 
tribute in the )~2t limit. In other words, in the )~2t limit the truncated 
correlation functions of p with p > 1 are irrelevant. If pq.f. is the quasifree 
state which has the same two-point correlations as p, then pa,(A) and 
p~.f. t (A)  have the same )~2t limit. 

II. Only those diagrams that give rise to a factor 8 (E)  can give a 
nonvanishing contribution in the ),2t limit. This is automatically fulfilled 
if A = a ( f ) * a ( g ) ,  owing to momentum conservation. For A = a( f l )*  
� 9  a ( f f ) * a ( g  0 . . .  a(gf) ,  with f > 1, a factor 8 (E)  can occur only with 

diagrams of the type shown in Fig. 5, with a contribution which is precisely 

Fig. 5. A diagram that gives rise to a factor 8(E) at the A vertex. 
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the product of the contributions of f two-point diagrams. This means that 
the state 0,, obtained from P7 in the X2t limit, has only two-point correla- 
tions, and hence is quasifree. 

Our first conclusion expresses the fact that after a sufficiently long 
time the state forgets the details of its past. The only remaining correlations 
are those that are consistent with the interparticle forces. According to our 
second conclusion the only remaining correlations are two-point correla- 
tions (one-particle distribution functions). 

7. THE TRANSPORT EQUATION 

The results of the previous section lead to the conclusion that, without 
loss of generality, the initial state p may be chosen to be quasifree. The 
~2t = r limit 0~ of P7 is again quasifree. Writing 

p , ( a ( f ) * a ( g ) )  = ~ N ( k ,  r ) ]  (k) ~ (k )  

we obtain for N(k ,  r) a power series in r. The coefficient of r in this series is 
the derivative of N(k ,  "r) with respect to r at r = 0, Taking p, instead of p as 
initial state, we obtain a integro-differential equation involving N(k ,  r). 

In order to calculate the term proportional to ,r, we proceed as in 
Section 5 and consider the second-order term. Only such terms contribute 
in the X2t limit, where the energy transfers at t I and t 2 are each others 
opposite. There are only two such diagrams, that of Fig, 3 and the one with 
all arrows reversed. According to the rules established in Section 5, they 
give the following contributions: 

1--X2s163163 I(kllY'lmkoY1283(k + l -  m -  ko) 
2 0 0 k lm 

• { N ( k ) N ( l ) [ 1  - N(ko)][1  - N (m)]  

- N ( k o ) N ( m ) [ 1  - N ( k ) ] [ 1  - N ( / ) ] )  

• exp[ i ( t  I - -  t 2 ) ( C  k 4 -  E l - -  C m - -  E k o ) ]  

where ( k l  I ITimko) = v (k  - ko) - v ( k  - m), and a second term, which only 
differs from this term through the opposite sign in the exponential. Their 
sum may be written as 

2 t t , , , s 
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In the X2t limit we obtain 

' f_7 s r du f ( u )  = . i f (O)  = ~rr I(kll ~Tlmko>12a3(k + t -  m - ko) 
klm 

• + - - -  % )  

• { N ( k ) N ( l ) [ 1 -  N ( m ) ] [ 1 -  N(ko) ] 

- N ( m ) N ( k o ) [ 1 -  N(k) ]  [ l -  N ( / ) ]  }. 

When choosing 07 as initial state, we obtain the transport equation 

d N ( k  o r) 

= gr~klml(kl[ V[mko)[283(k + l - m - k0)3(r k + e, - i[ m - -  •ko ) 

• { N ( k , ' r ) N ( l , r ) [ 1 -  N ( m , r  N ( k o , r  

- N ( k o , r ) N ( m , r ) [ 1  - N ( k , r ) ] [ 1  - N ( l , r ) ] }  (7.1) 

As one sees, this is the quantum Boltzmann equation where the scattering 
cross section appears in Born approximation. 

It is of interest to draw some immediate consequences of this equation. 
We define 

H = fd3k ( U ( k , t ) l o g U ( k , t )  + [1 - U(k , t ) ] l og[  1 - N ( k , t ) ] }  

In complete analogy with the derivation of the classical H theorem of 
Boltzmann one finds 

dHdt - -4~r ~tm l (k l  I ~Tlmn}j28 3(k + l - m -  n)6(~, k at- r - e m - s 

• { l o g [ N ( m ) N ( n ) ] [ 1 -  N ( k ) ] [ 1 -  N ( / ) ]  

- l o g [ N ( k ) N ( l ) [ 1 -  N(m)]  [1 - N(n) ]  } 

• ( N ( k ) N ( l ) [ 1  - N ( m ) ] [  1 - N(n)]  

- N ( m ) N ( n ) [ 1  - N ( k ) ]  [ 1 - N ( I ) ]  } (7.2) 

and hence 

dH < o  
dt 

It also follows from (7.2) that a stationary solution must satisfy the identity 

N ( k ) N ( [ ) I 1  - N ( m ) ] [ ( 1  - N(n ) ]  = N ( m ) N ( n ) [ 1  - N ( k ) ] [ 1  - N ( / ) ]  

for k, l and m, n satisfying momentum and energy conservation. We rewrite 
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this identity as follows: 

N ( k )  N ( l )  N(m)  
log 1 - N ( k )  +l~ 1 - N ( l )  = l ~  1 Z - ~ ( m )  

We conclude that N(k)  must have the general form 

N ( k )  
l O g l _ N ( k )  = ae(k) + bk + c 

or  

N ( k )  = 
l + e-ae(k)-bk- c 

N(n)  
+log  1 - N ( n )  

For a gas at rest, b=O,  a = - f l = - l / k T ,  and c=fl/~,  with /x the 
chemical potential. 

APPENDIX 

In the discussion of the asymptotic t dependence for large t of 
nth-order perturbation terms it was assumed that the functions f(~l, 
. . . .  %) as defined in Section 6 vanish sufficiently rapidly at infinity. In 

this Appendix we shall give a sufficient condition on f in order that the 
conclusions of Section 6 are valid, and we shall indicate how this condition 
derives from decay properties of the truncated correlations of P. 

As an example, let us consider a term of fourth order, 

( iX)4( td t l  ( t ' d t2 ( t 2d t3  't3dt4F ( l I , t2 , t3 , t 4 , / )  
JO JO dO 

where F = f ( q ,  t 2 - t3, t4). We assume that f is continuous and 

2 2 2  SlSzs3lf(s, ,Sz,S3)[ < M (A1) 

This implies in particular that f is absolutely integrable. We are interested 
in the integral 

t3dt4f( t l  t2--  t3 /4) 

which can be reduced to the following form: 
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We use (A1) to estimate [I(t)l: 

f, f, (, ]I(t)l < dt I dr d t4( t  ~ + "c + t4) lf i+ C ( a )  
J a  -'a J a  

2' r '  2' ,,+,+,4 < M dt I d r  d t  4 ~ 2  2 ~ 2  "Jr" C ( a )  

a ua  a llq" 14 

where a > 0 and C(a)  > 0. The integral is easily calculated; we find 

II( t ) l  < C ( a )  + 3Ma-21og t 

Because of the factor h a, this term vanishes in the )t2t limit�9 
We now consider the general case in nth order�9 We take a term where 

/~ in (6.3) contains p factors 8(E i + Eft, with 2p < n, and a factor 8(E).  
Then F in (6�9 depends on n - 2 p  time variables and p time differences. 
Introducing these time differences as new integration variables in (6.1), we 
obtain, after carrying out the integration over the p free variables (i.e., 
variables not occurring in the integrand), terms of the following general 
form: 

I ( t )  t o f  d, ,  . .  e -  = . ds,_p (s) f ( s , s 2 . . ,  s ,_e)  

with a = 0, 1 . . . . .  p. Here (s) p - "  is a monomial of degree p - a  in the 
variables s~, s 2 . . . . .  s ,_e �9  The region of integration is a subset of [0, t] n-p. 

We shall estimate II(t)l for large t. The case a = p  = (1/2)n can occur 
only if n is even and for each successive pair of vertices there is a factor 
6(E2i_ ~ + E2i ). In that case I ( t ) =  C .  t (~/2)'. For all other cases we esti- 
mate [I(t)[, assuming as before that f is continuous and 

22 . .  s~_pl f ( s  ' . .  Sn_p)l ~ m (A2) S I S  2 �9 

We have 

a P I  t ' l  

1I(')1 < t Jo dS'Jo ds2�9149 L `ds"-e(s)e-.]fl 

c~ t t 
< t M f d s  1 . ~ d s . _ p  ( s ) ' - "  �9 " 2 Y - -  -~-2 + C ( a )  

a S I S  2 . . . S n _  p 

For a = p -  1, the integral is asymptotically ~ l o g t ,  for c~ < p -  2 the 
integral is at most ~ t  p - a -  1. In all cases, we get for a < p 

lim t - e l l (  t)l = 0 
t---> ~ 

This proves that in the nth order all terms vanish in the )t2t limit except for 
= p = n / 2 .  
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As we have seen, the condit ion (A2) is crucial for the estimate given 
above. We shall now show that (A2) holds if the initial state p is sufficiently 
clustering, i.e., if the t runcated correlation functions of p have sufficient 
decay properties. The functions f occurr ing in (A2) are given by integrals of 
the following form: 

f~  , ,  re,s, e m~s'~ (A3) f ( s  1 . . . . .  Sin) = k , g ( k , ,  k 2 . . . . .  ~c,)e . . .  
i k 2  �9 . . 

where the energies E 1 , E 2, . . . ,  E m are each analytic functions of some of 
the momenta  k l, k 2 . . . . .  k , .  We shall show that (A2) follows from differ- 
entiability properties of g. We show this for the case M = 1. 

Lemma. Let 

f ( s )  = f~_~du, . . . du ,  g ( u ,  . . . u,)exp[ i E ( u ,  . . . u , ) s ]  

with g continuous and periodic with period 2~r in each of the variables, and 
E a noncons tan t  infinitely differentiable periodic function. Then f is 
cont inuous and vanishing at infinity. 

If an addit ion g is twice continuously differentiable, then s2f (s )  van- 
ishes at infinity, so that a f o r t i o r i  

s (s) < M 

For  the proof  see, e.g., Ref. 6. The funct ion g ( k l . . ,  k , )  in (A3) is a 
p roduc t  of some truncated correlation functions and some factors v ( k  i - 

kj).  Concerning v ( k )  we assume it to be sufficiently differentiable; in the 
special case that the interaction is of finite range, it is even entire. The 
differentiability properties of g depend, therefore, on the t runcated func- 
tions. As discussed in Section 4 these follow from suitable decay properties 
of the truncated correlation functions in x space. 
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